Ordered Interval Routing

نویسنده

  • Mustaq Ahmed
چکیده

An Interval Routing Scheme (IRS) represents the routing tables in a network in a space-efficient way by labeling each vertex with an unique integer address and the outgoing edges at each vertex with disjoint subintervals of these addresses. An IRS that has at most k intervals per edge label is called a k-IRS. In this thesis, we propose a new type of interval routing scheme, called an Ordered Interval Routing Scheme (OIRS), that uses an ordering of the outgoing edges at each vertex and allows nondisjoint intervals in the labels of those edges. Our results on a number of graphs show that using an OIRS instead of an IRS reduces the size of the routing tables in the case of optimal routing, i.e., routing along shortest paths. We show that optimal routing in any k-tree is possible using an OIRS with at most 2k−1 intervals per edge label, although the best known result for an IRS is 2 intervals per edge label. Any torus has an optimal 1-OIRS, although it may not have an optimal 1-IRS. We present similar results for the Petersen graph, k-garland graphs and a few other graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Generalization of Interval Valued $left( in ,in vee q_{widetilde{k}}right) $-Fuzzy bi-Ideals in Ordered Semigroups

In this paper, we introduce a new sort of interval valued $left(in ,in vee q_{widetilde{k}}^{widetilde{delta }}right) $-fuzzy bi-ideal in ordered semigroups which is the generalization of interval valued $left( in ,in vee q_{%widetilde{k}}right) $-fuzzy bi-ideal and interval valued $left( in ,in vee qright) $-fuzzy bi-ideal of ordered semigroups. We give examples in which we show that these str...

متن کامل

Interval fractional integrodifferential equations without singular kernel by fixed point in partially ordered sets

This work is devoted to the study of global solution for initial value problem of interval fractional integrodifferential equations involving Caputo-Fabrizio fractional derivative without singular kernel admitting only the existence of a lower solution or an upper solution. Our method is based on fixed point in partially ordered sets. In this study, we guaranty the existence of special kind of ...

متن کامل

Comparative Performance Analysis of AODV,DSR, TORA and OLSR Routing Protocols in MANET Using OPNET

Mobile Ad Hoc Networks (MANETs) are receiving a significant interest and are becoming very popular in the world of wireless networks and telecommunication. MANETs consist of mobile nodes which can communicate with each other without any infrastructure or centralized administration. In MANETs, the movement of nodes is unpredictable and complex; thus making the routing of the packets challenging....

متن کامل

Performance Analysis of TORA & DSR Routing Protocols in Mobile Ad-hoc Networks

Mobile ad hoc network (MANET) is an autonomous system of mobile nodes connected by wireless links. Each node operates not only as an end system, but also as a router to forward packets. The nodes are free to move about and organize themselves into a network. These nodes change position frequently. The main classes of routing protocols are Proactive, Reactive and Hybrid. A Reactive (on-demand) r...

متن کامل

Regular ordered semigroups and intra-regular ordered semigroups in terms of fuzzy subsets

Let $S$ be an ordered semigroup. A fuzzy subset of $S$ is anarbitrary mapping   from $S$ into $[0,1]$, where $[0,1]$ is theusual interval of real numbers. In this paper,  the concept of fuzzygeneralized bi-ideals of an ordered semigroup $S$ is introduced.Regular ordered semigroups are characterized by means of fuzzy leftideals, fuzzy right ideals and fuzzy (generalized) bi-ideals.Finally, two m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004